## Communication

## Carbene-Stabilized Diphosphorus

Yuzhong Wang, Yaoming Xie, Pingrong Wei, R. Bruce King, Henry
F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson
J. Am. Chem. Soc., 2008, 130 (45), 14970-14971 • DOI: 10.1021/ja807828t • Publication Date (Web): 21 October 2008

Downloaded from http://pubs.acs.org on February 8, 2009


## More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article


## View the Full Text HTML

## ACS Publications

Carbene-Stabilized Diphosphorus<br>Yuzhong Wang, Yaoming Xie, Pingrong Wei, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer,* and Gregory H. Robinson*<br>Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556

Received October 3, 2008; E-mail: robinson@chem.uga.edu

Brand's quest for the "philosopher's stone," by distilling residual salts from evaporated urine, led instead to phosphorus, the only element originally derived from the human body. ${ }^{1}$ The allotropy of phosphorus-white, red, and black-is well documented. Pyrolysis of white phosphorus, $\mathrm{P}_{4}$, yields the high temperature diphosphorus allotrope, gaseous $\mathrm{P}_{2} .{ }^{2}$ In contrast to the legendary inert nature of its ubiquitous lighter congener $\mathrm{N}_{2}, \mathrm{P}_{2}$ is highly reactive and association-prone. Is it possible to stabilize the $\mathrm{P}_{2}$ molecule to explore its expected versatility? Indeed, diphosphorus can function as four-, six-, and eight-electron donor ligands ${ }^{2}$ in transition metal carbonyl complexes. ${ }^{3}$ Remarkably, Cummins and co-workers reported the "mild thermal extrusion" of $\mathrm{P}_{2}$ from niobium diphosphaazide complexes ${ }^{4}$ and that the $\operatorname{Pt}(0)$ species, $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$, may serve as a trap for $\mathrm{W}(\mathrm{CO})_{5}$-complexed $\mathrm{P}_{2}$ molecules. ${ }^{5}$ In all these examples, $\mathrm{P}_{2}$ behaves as a typical Lewis base (i.e., an electron pair donor). We now demonstrate the stabilization of $\mathrm{P}_{2}$ by its serving as an electron pair acceptor and, thus, mimicking the behavior of a Lewis acid. Herein, we report the syntheses, ${ }^{6}$ structures, ${ }^{6}$ and computations ${ }^{7}$ of N-heterocyclic carbene (NHC, L:) stabilized $\mathrm{P}_{2}$ molecules, L:P-P:L, 1 ( $\mathrm{L}^{\prime}:=: \mathrm{C}-$ $\left.\left\{\mathrm{N}\left(2,6-\operatorname{Pr}^{\mathrm{i}} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{CH}\right\}_{2}\right)$ and $2\left(\mathrm{~L}^{\prime \prime}:=: \mathrm{C}\left\{\mathrm{N}\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-\right.\right.$ $\mathrm{CH}\}_{2}$ ). While the free $\mathrm{P}_{2}$ molecule, : $\mathrm{P} \equiv \mathrm{P}$ :, possesses a phosphorusphosphorus triple bond, compounds $\mathbf{1}$ and $\mathbf{2}$ exhibit a unique bisphosphinidene structure: two phosphinidene units, each with two lone pairs of electrons, bridged by a phosphorus - phosphorus single bond.


Recently, Bertrand and co-workers reported $\mathrm{P}_{4}-$ and $\mathrm{P}_{12}$-based carbene complexes. ${ }^{8-10}$ Our laboratory recently reported carbenestabilized diborenes, $\mathrm{L}:(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}): \mathrm{L},{ }^{11,12}$ and diatomic silicon, $\mathrm{L}: \mathrm{Si}=\mathrm{Si}: \mathrm{L} .{ }^{13}$ Extending this strategy, we prepared $\mathrm{L}: \mathrm{PCl}_{3}$ by combining L: ligands with $\mathrm{PCl}_{3}$. The potassium graphite reduction of $\mathrm{L}: \mathrm{PCl}_{3}\left(\mathrm{~L}: \mathrm{PCl}_{3} / \mathrm{KC}_{8}\right.$ ratio of 1:3.1) in THF affords the carbenestabilized diphosphorus $\mathrm{L}: \mathrm{P}-\mathrm{P}: \mathrm{L}$ compounds, $\mathbf{1}\left(\mathrm{L}:=\mathrm{L}^{\prime}:\right)$ and $\mathbf{2}$ ( $\mathrm{L}:=\mathrm{L}^{\prime \prime}$ :), respectively (Figure 1). Both $\mathbf{1}$ and $\mathbf{2}$ were isolated as moisture- and air-sensitive red crystals in moderate yields ( $\mathbf{1}, 56.6 \%$; $\mathbf{2 , 2 0 . 7 \%}$ ). The ${ }^{1} \mathrm{H}$ NMR imidazole resonances $(\mathrm{C}-\mathrm{H})$ of $\mathbf{1}$ and $\mathbf{2}$ are 5.98 and 5.71 ppm , respectively. The ${ }^{1} \mathrm{H}$-coupled ${ }^{31} \mathrm{P}$ NMR singlet resonances, -52.4 and -73.6 ppm for $\mathbf{1}$ and $\mathbf{2}$, respectively, are comparable to those of other carbene-phosphinidene adducts, ${ }^{14}$


Figure 1. Molecular structures of $\mathbf{1}$ and 2 (thermal ellipsoids represent $30 \%$ probability; hydrogen atoms omitted for clarity). Selected bond distances $(\AA)$ and angles (deg): For 1, P(1)-P(1A) 2.2052(10), P(1)-C(1) 1.7504(17); $\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(1 \mathrm{~A}) 103.19(6)$. For 2, $\mathrm{P}(1)-\mathrm{P}(2)$ 2.1897(11), $\mathrm{P}(1)-\mathrm{C}(1) 1.754(3), \mathrm{P}(2)-\mathrm{C}(22) 1.754(3) ; \mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(2)$ 102.57(10), $\mathrm{C}(22)-\mathrm{P}(2)-\mathrm{P}(1)$ 103.01(10).


Figure 2. Localized molecular orbitals (LMOs) of $\mathbf{1}-\mathrm{H}$ with $C_{2 h}$ symmetry. (a) $\mathrm{P}-\mathrm{P} \sigma$-bonding orbital; (b) $\mathrm{P}-\mathrm{C} \sigma$-bonding orbital; (c) lone pair orbital (mainly p-character) with $\mathrm{p} \pi$ back-donation to the empty p orbital of $\mathrm{C}_{\mathrm{NHC}}$; (d) lone pair orbital (mainly s-character).
$\mathrm{L}: \mathrm{P}(\mathrm{Ph}),-53.5 \mathrm{ppm}(\mathrm{L}:=$ tetramethylimidazol-2-ylidene) (3a) and $-23.0 \mathrm{ppm}\left(\mathrm{L}:=: \mathrm{C}\left\{\mathrm{N}\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{CH}\right\}_{2}\right)(3 \mathrm{~b})$, but are quite different from those ( 34 to 54 ppm ) of diphosphabutadienes, $\left(\mathrm{R}_{2} \mathrm{~N}\right)_{2} \mathrm{C}=\mathrm{P}-\mathrm{P}=\mathrm{C}\left(\mathrm{NR}_{2}\right)_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}) .{ }^{15}$ The lack of detectable ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$ coupling in $\mathbf{1}$ and $\mathbf{2}$ also supports the assigned structures.

Compound $\mathbf{1}$ has $C_{i}$ symmetry and a trans-bent geometry with a $180.0^{\circ} \mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ torsion angle about the central $\mathrm{P}-\mathrm{P}$ bond. The $\mathrm{P}-\mathrm{P}$ bond distance, $2.205 \AA$, compares well to the $2.21 \AA \mathrm{P}-\mathrm{P}$ single bond distance in $T_{d} \mathrm{P}_{4}{ }^{2}$ The $\mathrm{C}(1)-\mathrm{P}(1)-$ $\mathrm{P}(1 \mathrm{~A})$ bond angle $\left(103.2^{\circ}\right)$ corresponds to the $110^{\circ} \mathrm{C}-\mathrm{P}-\mathrm{P}$ angle (av) in the $\mathrm{L}:[\mathrm{P}-\mathrm{P}=\mathrm{P}-\mathrm{P}]: \mathrm{L}$ carbene adduct, $4,{ }^{8}$ and the computed $\mathrm{C}-\mathrm{P}-\mathrm{P}$ angles in both $\mathrm{H}_{2} \mathrm{C}=\mathrm{P}-\mathrm{P}=\mathrm{CH}_{2}\left(5, C_{2 h}\right)\left(101.2^{\circ}\right)$ and $\mathrm{H}_{3} \mathrm{CP}=\mathrm{PCH}_{3}\left(\mathbf{6}, C_{2 h}\right)\left(99.9^{\circ}\right) .{ }^{7}$ Hence, the $\mathrm{C}-\mathrm{P}-\mathrm{P}$ angle does not help delineate the nature of the $\mathrm{P}-\mathrm{C}_{\mathrm{NHC}}$ bonding. Notably, the two imidazole rings and the $\mathrm{P}-\mathrm{P}$ bond of $\mathbf{1}$ are almost coplanar (the $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(1 \mathrm{~A})$ torsion angle is $2.3^{\circ}$; this value is $8.2^{\circ}$ (av) in 2). The $\mathrm{P}-\mathrm{C}$ bond length ( $1.750 \AA$ ) in $\mathbf{1}$, similar to those $(1.75-1.79 \AA)$ in $\mathbf{2 - 4}$, is between the $1.65-1.67 \AA \mathrm{P}=\mathrm{C}$ double bond lengths of the nonconjugated phosphaalkenes ${ }^{16}$ and the normal
$\mathrm{P}-\mathrm{C}$ single bond distance (i.e., the $1.839 \AA \mathrm{P}-\mathrm{C}$ lengths in 3b and the computed $1.87 \AA$ in $\mathbf{6}$ ). Two interpretations of the bonding in $\mathbf{1}, \mathbf{1 A}$ (bis-phosphinidene), and 1B (bis-phosphaalkene) (eq 1) are akin to two resonance forms of carbene-phosphinidene adducts. ${ }^{17}$ Donation of the two carbene electron lone pairs to P decreases the phosphorus-phosphorus bond order from three in $: \mathrm{P} \equiv \mathrm{P}$ : to one in $\mathbf{1 A}$ or $\mathbf{1 B}$.

The $\mathrm{P}=\mathrm{C}$ double bond character implied by 1B inhibits, however, the imidazole $\pi$-delocalization and should be consistent with the ${ }^{31} \mathrm{P}$ NMR chemical shifts ( 34 to 54 ppm ) of the diphosphabutadienes. ${ }^{15}$ Instead, the high-field ${ }^{31} \mathrm{P}$ NMR chemical shift $(-52.4$ ppm ) of $\mathbf{1}$ favors $\mathbf{1 A}$ as the predominate formulation. ${ }^{14,17,18}$


Our DFT computations on the simplified L:P-P:L model, 1-H, support this interpretation. ${ }^{7}$ Optimization of $\mathbf{1 - H}\left(C_{2 h}\right.$ symmetry) affords the same trans-bent conformation as that for $\mathbf{1}$, but with one imaginary frequency corresponding to a rotational transition state. Notably, the ca. $7 \mathrm{kcal} / \mathrm{mol}$ more stable gauche minimum of $\mathbf{1 - H}\left(C_{2}\right.$ symmetry) $\left(\mathrm{C}-\mathrm{P}-\mathrm{P}-\mathrm{C}\right.$ torsion angle $\left.=98.6^{\circ}\right)$ resembles that of the isolobal $\mathrm{H}_{2} \mathrm{~S}_{2}\left(\mathrm{H}-\mathrm{S}-\mathrm{S}-\mathrm{H}\right.$ torsion angle $\left.=90.6^{\circ}\right) .{ }^{19}$ The sensitivity of the conformation about the $\mathrm{P}-\mathrm{P}$ bond to the steric effects of the nearby carbene ligands (shown clearly by inspecting space-filling models) was confirmed by preparing 2 , which has a smaller carbene ligand than $\mathbf{1}$. Although having bond distances similar to those for $\mathbf{1}$, compound $\mathbf{2}$ adopts a gauche conformation. The $\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(22)$ torsion angle ( $134.1^{\circ}$ ) of 2 lies between the $180^{\circ}$ of $\mathbf{1}$ and the $98.6^{\circ}$ of $\mathbf{1 - H}$ ( $C_{2}$ minimum).

The localized molecular orbitals (LMOs) of the simplified models (with L: $\left.=: \mathrm{C}(\mathrm{NHCH})_{2}\right) \mathbf{1 - H}\left(\right.$ optimized in both $C_{2 h}($ Figure 2) and $C_{2}$ symmetries) and $\mathbf{2} \mathbf{- H}$ (employing the X-ray coordinates of $\mathbf{2}$ ) are quite similar. ${ }^{7}$ All LMOs have one $\mathrm{P}-\mathrm{P} \sigma$-bond (a), one $\mathrm{P}-\mathrm{C}$ $\sigma$-bond (b), and two lone-pair orbitals on each P atom ( $\mathbf{c}$ and $\mathbf{d}$ ). As exemplified in the $\mathbf{1}-\mathbf{H}$ model $\left(C_{2 h}\right)$, (d) has mainly s-character $(68.8 \% \mathrm{~s}, 31.2 \% \mathrm{p}, 0.0 \% \mathrm{~d})$ according to natural bond orbital (NBO) analysis, while (c) is essentially pure p $(0.0 \% \mathrm{~s}, 99.8 \% \mathrm{p}, 0.2 \% \mathrm{~d})$, but involving modest interaction with the p orbital of $\mathrm{C}_{\mathrm{NHC}}$ as implied by 1B. This $\mathrm{p} \pi$ back-donation, involving $64.8 \% \mathrm{P}$ and $35.2 \% \mathrm{C}$ components, results in modest $\mathrm{P}=\mathrm{C}$ double bond character and is consistent with the structural data of $\mathbf{1}$ (i.e., the coplanarity of the imidazole rings and the $\mathrm{P}_{2}$ unit, the $1.750 \AA \mathrm{P}-\mathrm{C}$ bond distance, and the $1.397 \mathrm{P}-\mathrm{C}$ Wiberg bond index $(\mathrm{WBI}))^{7}$ The $\mathrm{P}-\mathrm{C}$
$\sigma$ bond polarization is $64.8 \%$ toward carbon and $35.2 \%$ toward phosphorus that has $20.7 \% \mathrm{~s}-, 78.6 \% \mathrm{p}$-, and $0.7 \%$ d-character. The $\mathrm{P}-\mathrm{P}$ bond is single $(\mathrm{WBI}=1.004)$ with $11.5 \% \mathrm{~s}-, 87.9 \% \mathrm{p}-$, and $0.6 \%$ d-character. Thus, like the silicon atoms in $\mathrm{L}: \mathrm{Si}=\mathrm{Si}: \mathrm{L}^{13}$ and third-period elements generally, the phosphorus atoms in $\mathbf{1}$ and 2 do not hybridize extensively. Notably, the $\mathrm{P}_{2}$ unit in the L:P-P:L molecules is demonstrated to serve as electron pair acceptors, thereby mimicking the behavior of a Lewis acid.

Acknowledgment. We are grateful to the National Science Foundation for support of this work: CHE-0608142 (G.H.R.), CHE0716718 (P.v.R.S. and R.B.K.), and CHE-0749868 (H.F.S.).

Supporting Information Available: Complete ref 7, full details of the syntheses, computations, and X-ray crystal determination, including cif files. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

(1) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997.
(2) Cotton, F. A.; Wilkinson, G.; Murillo, C.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.
(3) Stone, F. G. A., West, R., Eds. Advances in Organometallic Chemistry, Volume 42; Academic Press: San Diego, 1998.
(4) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276-1279.
(5) Piro, N. A.; Cummins, C. C. Inorg. Chem. 2007, 46, 7387-7393.
(6) See the Supporting Information for synthetic and crystallographic details.
(7) The DFT computations of $\mathbf{1 - H}$ and $\mathbf{2 - H}$ at the B3LYP/DZP level with the Gaussian 94 and Gaussian 03 programs: Frisch, M. J.; et al. Gaussian 94, Revision B.3; Gaussian Inc.: Pittsburgh, PA, 1995; Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004. For comparison, the WBI (and $\mathrm{P}-\mathrm{P} / \mathrm{C}-\mathrm{P}$ distances) at B3LYP/6-311+G** are: $\mathrm{P}_{2} 3.010$ (1.897 $\AA$ ); $\mathrm{HP}=\mathrm{PH}\left(C_{2 h}\right) 2.038(2.042 \AA) ; \mathrm{H}_{2} \mathrm{P}-\mathrm{PH}_{2}\left(C_{2}\right) 1.037(2.258 \AA \AA) ;$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{P}-P=\mathrm{CH}_{2}\left(\mathbf{5}, C_{2 h}\right) \mathrm{C}-\mathrm{P} 1.887(1.673 \AA), \mathrm{P}-\mathrm{P} 1.027(2.235 \AA) ;$ $\mathrm{CH}_{3} \mathrm{P}-\mathrm{PCH}_{3}\left(6, C_{2 h}\right) \mathrm{C}-\mathrm{P} 0.973(1.871 \AA), \mathrm{P}-\mathrm{P} 1.933(2.039 \AA)$.
(8) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 7052-7055.
(9) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2007, 129, 14180-14181.
(10) Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050-1051.
(11) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H. F., III.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2007, 129, 12412-12413.
(12) Wang, Y.; Quillian, B.; Wei, P.; Xie, Y.; Wannere, C. S.; King, R. B.; Schaefer, H. F., III.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 3298-3299.
(13) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III.; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069-1071.
(14) Arduengo, A. J., III.; Calabrese, J. C.; Cowley, A. H.; Dias, H. V. R.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. Inorg. Chem. 1997, 36, 21512158.
(15) Romanenko, V. D.; Kachkovskaya, L. S.; Markovskii, L. N. Zh. Obshch. Khim. 1985, 55, 2140-2141.
(16) Weber, L. Eur. J. Inorg. Chem. 2000, 2425-2441.
(17) Arduengo, A. J., III.; Carmalt, C. J.; Clyburne, J. A. C.; Cowley, A. H.; Pyati, R. Chem. Commun. 1997, 981-982.
(18) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-91.
(19) Winnewisser, G.; Winnewisser, M.; Gordy, W. J. Chem. Phys. 1968, 49, 3465-3478.
JA807828T

