

Communication

Carbene-Stabilized Diphosphorus

Yuzhong Wang, Yaoming Xie, Pingrong Wei, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson

J. Am. Chem. Soc., 2008, 130 (45), 14970-14971 • DOI: 10.1021/ja807828t • Publication Date (Web): 21 October 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 10/21/2008

Carbene-Stabilized Diphosphorus

Yuzhong Wang, Yaoming Xie, Pingrong Wei, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer,* and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556

Received October 3, 2008; E-mail: robinson@chem.uga.edu

Brand's quest for the "philosopher's stone," by distilling residual salts from evaporated urine, led instead to phosphorus, the only element originally derived from the human body.¹ The allotropy of phosphorus-white, red, and black-is well documented. Pyrolysis of white phosphorus, P_4 , yields the high temperature diphosphorus allotrope, gaseous P_2 .² In contrast to the legendary inert nature of its ubiquitous lighter congener N2, P2 is highly reactive and association-prone. Is it possible to stabilize the P2 molecule to explore its expected versatility? Indeed, diphosphorus can function as four-, six-, and eight-electron donor ligands² in transition metal carbonyl complexes.3 Remarkably, Cummins and co-workers reported the "mild thermal extrusion" of P2 from niobium diphosphaazide complexes⁴ and that the Pt(0) species, $(C_2H_4)Pt(PPh_3)_2$, may serve as a trap for W(CO)₅-complexed P₂ molecules.⁵ In all these examples, P₂ behaves as a typical Lewis base (i.e., an electron pair donor). We now demonstrate the stabilization of P2 by its serving as an electron pair acceptor and, thus, mimicking the behavior of a Lewis acid. Herein, we report the syntheses,⁶ structures,⁶ and computations⁷ of N-heterocyclic carbene (NHC, L:) stabilized P_2 molecules, L:P-P:L, 1 (L': = :C- $\{N(2,6-Pr^{i}_{2}C_{6}H_{3})CH\}_{2}$ and 2 $(L'': = :C\{N(2,4,6-Me_{3}C_{6}H_{2})-$ CH $_2$). While the free P₂ molecule, :P=P:, possesses a phosphorusphosphorus triple bond, compounds 1 and 2 exhibit a unique bisphosphinidene structure: two phosphinidene units, each with two lone pairs of electrons, bridged by a phosphorus-phosphorus single bond.

Recently, Bertrand and co-workers reported P_{4^-} and P_{12} -based carbene complexes.^{8–10} Our laboratory recently reported carbenestabilized diborenes, L:(H)B=B(H):L,^{11,12} and diatomic silicon, L:Si=Si:L.¹³ Extending this strategy, we prepared L:PCl₃ by combining L: ligands with PCl₃. The potassium graphite reduction of L:PCl₃ (L:PCl₃/KC₈ ratio of 1:3.1) in THF affords the carbenestabilized diphosphorus L:P—P:L compounds, **1** (L: = L':) and **2** (L: = L'':), respectively (Figure 1). Both **1** and **2** were isolated as moisture- and air-sensitive red crystals in moderate yields (**1**, 56.6%; **2**, 20.7%). The ¹H NMR imidazole resonances (C—H) of **1** and **2** are 5.98 and 5.71 ppm, respectively. The ¹H-coupled ³¹P NMR *singlet* resonances, -52.4 and -73.6 ppm for **1** and **2**, respectively, are comparable to those of other carbene-phosphinidene adducts,¹⁴

Figure 1. Molecular structures of 1 and 2 (thermal ellipsoids represent 30% probability; hydrogen atoms omitted for clarity). Selected bond distances (Å) and angles (deg): For 1, P(1)–P(1A) 2.2052(10), P(1)–C(1) 1.7504(17); C(1)–P(1)–P(1A) 103.19(6). For 2, P(1)–P(2) 2.1897(11), P(1)–C(1) 1.754(3), P(2)–C(22) 1.754(3); C(1)–P(1)–P(2) 102.57(10), C(22)–P(2)–P(1) 103.01(10).

Figure 2. Localized molecular orbitals (LMOs) of **1-H** with C_{2h} symmetry. (a) P–P σ -bonding orbital; (b) P–C σ -bonding orbital; (c) lone pair orbital (mainly p-character) with $p\pi$ back-donation to the empty p orbital of C_{NHC}; (d) lone pair orbital (mainly s-character).

L:P(Ph), -53.5 ppm (L: = tetramethylimidazol-2-ylidene) (**3a**) and -23.0 ppm (L: = :C{N(2,4,6-Me_3C_6H_2)CH}_2) (**3b**), but are *quite different* from those (34 to 54 ppm) of diphosphabutadienes, (R₂N)₂C=P-P=C(NR₂)₂ (R = Me, Et).¹⁵ The lack of detectable ³¹P⁻¹H coupling in **1** and **2** also supports the assigned structures.

Compound 1 has C_i symmetry and a trans-bent geometry with a 180.0° C(1)—P(1)—P(1A)—C(1A) torsion angle about the central P—P bond. The P—P bond distance, 2.205 Å, compares well to the 2.21 Å P—P single bond distance in T_d P₄.² The C(1)—P(1)—P(1A) bond angle (103.2°) corresponds to the 110° C—P—P angle (av) in the L:[P—P=P—P]:L carbene adduct, **4**,⁸ and the computed C—P—P angles in both H₂C=P—P=CH₂ (**5**, C_{2h}) (101.2°) and H₃CP=PCH₃ (**6**, C_{2h}) (99.9°).⁷ Hence, the C—P—P angle does not help delineate the nature of the P—C_{NHC} bonding. Notably, the two imidazole rings and the P—P bond of **1** are almost coplanar (the N(2)—C(1)—P(1)—P(1A) torsion angle is 2.3°; this value is 8.2° (av) in **2**). The P—C bond length (1.750 Å) in **1**, similar to those (1.75–1.79 Å) in **2**–**4**, is between the 1.65–1.67 Å P=C double bond lengths of the nonconjugated phosphaalkenes¹⁶ and the normal

P-C single bond distance (i.e., the 1.839 Å P-C lengths in 3b and the computed 1.87 Å in 6). Two interpretations of the bonding in 1, 1A (bis-phosphinidene), and 1B (bis-phosphaalkene) (eq 1) are akin to two resonance forms of carbene-phosphinidene adducts.¹⁷ Donation of the two carbene electron lone pairs to P decreases the phosphorus-phosphorus bond order from three in $:P \equiv P$: to one in **1A** or **1B**.

The P=C double bond character implied by 1B inhibits, however, the imidazole π -delocalization and should be consistent with the ³¹P NMR chemical shifts (34 to 54 ppm) of the diphosphabutadienes.¹⁵ Instead, the high-field ³¹P NMR chemical shift (-52.4 ppm) of **1** favors **1A** as the predominate formulation.^{14,17,18}

Our DFT computations on the simplified L:P-P:L model, 1-H, support this interpretation.⁷ Optimization of **1-H** (C_{2h} symmetry) affords the same trans-bent conformation as that for 1, but with one imaginary frequency corresponding to a rotational transition state. Notably, the ca. 7 kcal/mol more stable gauche minimum of **1-H** (C_2 symmetry) (C-P-P-C torsion angle = 98.6°) resembles that of the isolobal H_2S_2 (H-S-S-H torsion angle = 90.6°).¹⁹ The sensitivity of the conformation about the P-P bond to the steric effects of the nearby carbene ligands (shown clearly by inspecting space-filling models) was confirmed by preparing 2, which has a smaller carbene ligand than 1. Although having bond distances similar to those for 1, compound 2 adopts a gauche conformation. The C(1)-P(1)-P(2)-C(22) torsion angle (134.1°) of 2 lies between the 180° of **1** and the 98.6° of **1-H** (C_2 minimum).

The localized molecular orbitals (LMOs) of the simplified models (with L: = :C(NHCH)₂) **1-H** (optimized in both C_{2h} (Figure 2) and C_2 symmetries) and **2-H** (employing the X-ray coordinates of **2**) are quite similar.⁷ All LMOs have one P–P σ -bond (a), one P–C σ -bond (**b**), and two lone-pair orbitals on each P atom (**c** and **d**). As exemplified in the 1-H model (C_{2h}) , (d) has mainly s-character (68.8% s, 31.2% p, 0.0% d) according to natural bond orbital (NBO) analysis, while (c) is essentially pure p (0.0% s, 99.8% p, 0.2% d), but involving modest interaction with the p orbital of C_{NHC} as implied by **1B**. This $p\pi$ back-donation, involving 64.8% P and 35.2% C components, results in modest P=C double bond character and is consistent with the structural data of 1 (i.e., the coplanarity of the imidazole rings and the P2 unit, the 1.750 Å P-C bond distance, and the 1.397 P-C Wiberg bond index (WBI)).⁷ The P-C σ bond polarization is 64.8% toward carbon and 35.2% toward phosphorus that has 20.7% s-, 78.6% p-, and 0.7% d-character. The P–P bond is single (WBI = 1.004) with 11.5% s-, 87.9% p-, and 0.6% d-character. Thus, like the silicon atoms in L:Si=Si:L13 and third-period elements generally, the phosphorus atoms in 1 and 2 do not hybridize extensively. Notably, the P_2 unit in the L:P-P:L molecules is demonstrated to serve as electron pair acceptors, thereby mimicking the behavior of a Lewis acid.

Acknowledgment. We are grateful to the National Science Foundation for support of this work: CHE-0608142 (G.H.R.), CHE-0716718 (P.v.R.S. and R.B.K.), and CHE-0749868 (H.F.S.).

Supporting Information Available: Complete ref 7, full details of the syntheses, computations, and X-ray crystal determination, including cif files. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997
- Cotton, F. A.; Wilkinson, G.; Murillo, C.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.
- Stone, F. G. A., West, R., Eds. Advances in Organometallic Chemistry, Volume 42; Academic Press: San Diego, 1998.
- (4) Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276–1279.
- (5) Piro, N. A.; Cummins, C. C. Inorg. Chem. 2007, 46, 7387-7393.
- (6) See the Supporting Information for synthetic and crystallographic details. (7) The DFT computations of 1-H and 2-H at the B3LYP/DZP level with the Gaussian 94 and Gaussian 03 programs: Frisch, M. J.; et al. Gaussian 94, Revision B.3; Gaussian Inc.: Pittsburgh, PA, 1995; Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004. For comparison, the WBI (and P–P/C–P distances) at B3LYP/6-311+G** are: P₂ 3.010 (1.897 Å); $\begin{array}{l} \text{(Interm 1716)} & \text{(Int$
- (8) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 7052–7055.
- Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2007, 129, 14180–14181.
- (10) Dyker, C. A.; Bertrand, G. Science 2008, 321, 1050–1051.
 (11) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H. F., III.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2007, 129, 12412–12413.
- (12) Wang, Y.; Quillian, B.; Wei, P.; Xie, Y.; Wannere, C. S.; King, R. B.; Schaefer, H. F., III.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2008, 130, 3298-3299
- (13) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III.; Schleyer, P. v. R.; Robinson, G. H. Science **2008**, 321, 1069–1071.
- (14) Arduengo, A. J., III.; Calabrese, J. C.; Cowley, A. H.; Dias, H. V. R.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. Inorg. Chem. 1997, 36, 2151-2158.
- (15) Romanenko, V. D.; Kachkovskaya, L. S.; Markovskii, L. N. Zh. Obshch. *Khim.* **1985**, *55*, 2140–2141.
 (16) Weber, L. *Eur. J. Inorg. Chem.* **2000**, 2425–2441.
- Arduengo, A. J., III.; Carmalt, C. J.; Clyburne, J. A. C.; Cowley, A. H.; (17)Pyati, R. Chem. Commun. 1997, 981-982.
- (18) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100 39-91
- (19) Winnewisser, G.; Winnewisser, M.; Gordy, W. J. Chem. Phys. 1968, 49, 3465-3478.

JA807828T